Chapter 8- Quadrilaterals

Exercise 8.1

Question 1: The angles of a quadrilateral are in the ratio 3: 5: $9: 13$. Find all the angles of the quadrilateral.

Answer: Let the angles of the quadrilateral be $3 x, 5 x, 9 x$ and $13 x$.
therefore, $3 x+5 x+9 x+13 x=360^{\circ}$ [as we know angle sum property of a quadrilateral]
or, $30 x=360^{\circ}$
or, $x=\frac{360^{\circ}}{30}=12^{\circ}$
thus, $3 \mathrm{x}=3 \times 12^{\circ}=36^{\circ}$
$5 \mathrm{x}=5 \times 12^{\circ}=60^{\circ}$
$9 x=9 \times 12^{\circ}=108^{\circ}$
$13 \mathrm{a}=13 \times 12^{\circ}=156^{\circ}$
Hence, the required angles of the quadrilateral are $36^{\circ}, 60^{\circ}, 108^{\circ}$ and 156°.

Question 2: If the diagonals of a parallelogram are equal, then show that it is a

 rectangle.Answer: Let $A B C D$ is a parallelogram and $A C=B D$.

In $\triangle A B C$ and $\triangle D C B$,
$A C=D B$ [Given]
$A B=D C$ [Opposite sides of a parallelogram]
$B C=C B$ [Common]
therefore, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}$ [By SSS congruency]
or, $\angle A B C=\angle D C B$ [By C.P.C.T.]
Now, $A B|\mid D C$ and $B C$ is a transversal. [As we know that, $A B C D$ is a parallelogram] therefore, $\angle A B C+\angle D C B=180^{\circ}$
(2) [Co-interior angles]

Now from (1) and (2), we have
$\angle A B C=\angle D C B=90^{\circ}$
i.e., $A B C D$ is a parallelogram having an angle equal to 90°.

Hence, $A B C D$ is a rectangle.

Question 3: Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Answer: Let ABCD be a quadrilateral such that the diagonals $A C$ and $B D$ bisect each other at O making a right angle.

therefore, In $\triangle A O B$ and $\triangle A O D$, we have
$A O=A O$ [Common]
$\mathrm{OB}=\mathrm{OD}$ [O is the mid-point of BD]
$\angle A O B=\angle A O D\left[E a c h 90^{\circ}\right]$
therefore, $\triangle \mathrm{AQB} \cong \triangle \mathrm{AOD}$ [By,SAS congruency]
hence, $\mathrm{AB}=\mathrm{AD}$ [By C.P.C.T.]
Similarly, $A B=B C$
$B C=C D$
$C D=D A$
therefore, From (1), (2), (3) and (4), we have
$A B=B C=C D=D A$
Thus, the quadrilateral $A B C D$ is a rhombus.

Question 4: Show that the diagonals of a square are equal and bisect each other at right angles.

Answer: Let ABCD be a square such that its diagonals AC and BD intersect at O .

i) To prove that the diagonals are equal.

Therefore, we need to prove $A C=B D$.
In $\triangle A B C$ and $\triangle B A D$, we have
$A B=B A$ [Common]
$B C=A D$ [Sides of a square $A B C D]$

```
\angleABC = }\angle\textrm{BAD}[\mathrm{ [Each angle is 90}\mp@subsup{}{}{\circ}
hence, }\triangleABC\cong\triangleBAD [By SAS congruency]
AC = BD [By C.P.C.T.]
(ii) To prove diagonals bisect each other.
\(A D|\mid B C\) and \(A C\) is a transversal. [ \(\because\) A square is a parallelogram \(]\) therefore, \(\angle 1=\angle 3\)
[Alternate interior angles are equal]
Similarly, \(\angle 2=\angle 4\)
Now, in \(\triangle \mathrm{OAD}\) and \(\triangle \mathrm{OCB}\), we have
\(A D=C B\) [Sides of a square ABCD]
\(\angle 1=\angle 3\) [Proved]
\(\angle 2=\angle 4\) [Proved]
therefore, \(\triangle \mathrm{OAD} \cong \triangle O C B\) [By ASA congruency]
\(\Rightarrow O A=O C\) and \(O D=O B\) [By C.P.C.T.]
i.e., the diagonals \(A C\) and \(B D\) bisect each other at \(O\)
iii) To prove diagonals bisect each other at \(90^{\circ}\).

In \(\triangle\) OBA and \(\triangle\) ODA, we have
\(\mathrm{OB}=\mathrm{OD}\) [Proved]
\(\mathrm{BA}=\mathrm{DA}\) [Sides of a square ABCD]
OA = OA [Common]
therefore, \(\triangle \mathrm{OBA} \cong \triangle \mathrm{ODA}\) [By SSS congruency]
or, \(\angle A O B=\angle A O D\) [By C.P.C.T.]
As we know that, \(\angle A O B\) and \(\angle A O D\) form a linear pair
hence, \(\angle A O B+\angle A O D=180^{\circ}\)
therefore, \(\angle A O B=\angle A O D=90^{\circ}[B y(3)]\)
or, \(A C \perp B D\)
From (1), (2) and (4), we get \(A C\) and \(B D\) are equal and bisect each other at right angles.

\section*{Question 5: Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.}

Answer: Let ABCD be a quadrilateral such that diagonals AC and BD are equal and bisect each other at right angles.


In \(\triangle A O D\) and \(\triangle A O B\), we have
\(\angle A O D=\angle A O B\) [Each \(90^{\circ}\) ]
\(A O=A O\) [Common]
\(\mathrm{OD}=\mathrm{OB}[\mathrm{As}, \mathrm{O}\) is the midpoint of BD ]
therefore, \(\triangle A O D \cong \triangle A O B\) [By SAS congruency]
or, \(A D=A B\) [By C.P.C.
Similarly, we have
\(A B=B C\)
\(B C=C D\)
\(C D=D A\)
From (1), (2), (3) and (4), we have
\(A B=B C=C D=D A\)
Therefore, all sides of the Quadrilateral \(A B C D\) are equal.
In \(\triangle \mathrm{AOD}\) and \(\triangle \mathrm{COB}\), we have
\(\mathrm{AO}=\mathrm{CO}\) [Given]
\(\mathrm{OD}=\mathrm{OB}\) [Given]
\(\angle A O D=\angle C O B\) [Vertically opposite angles]
So, \(\triangle \mathrm{AOD} \cong \triangle \mathrm{COB}\) [By SAS congruency]
therefore, \(\angle 1=\angle 2\) [By C.P.C.T.]
But, they form a pair of alternate interior angles.
hence, \(A D|\mid B C\)
Similarly, \(A B|\mid D C\)
Therefore, ABCD is a parallelogram.
As we know that, Parallelogram having all its sides equal is a rhombus.
Therefore, \(A B C D\) is a rhombus.
Now, in \(\triangle A B C\) and \(\triangle B A D\), we have
\(\mathrm{AC}=\mathrm{BD}\) [Given]
\(B C=A D[\) Proved \(]\)
\(\mathrm{AB}=\mathrm{BA}\) [Common]
therefore, \(\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}\) [By SSS congruency]
hence, \(\angle A B C=\angle B A D[B y ~ C . P . C . T]\).
Since \(A D \| B C\) and \(A B\) is a transversal.
thus, \(\angle A B C+\angle B A D=180^{\circ}\) \(\qquad\) (6) [ Co - interior angles]
or, \(\angle A B C=\angle B A D=90^{\circ}[B y(5) \&(6)]\)
So, rhombus ABCD is having one angle equal to \(90^{\circ}\).
Thus, ABCD is a square.

Question 6: Diagonal AC of a parallelogram \(A B C D\) bisects \(\angle A\) (see figure). Show that (i) it bisects \(\angle \mathrm{C}\) also,

\section*{(ii) \(A B C D\) is a rhombus.}


Answer:


We have a parallelogram \(A B C D\) whose diagonal \(A C\) bisects \(\angle A\) hence, \(\angle D A C=\angle B A C\)
(i) Since, \(A B C D\) is a parallelogram.

Therefore, \(A B|\mid D C\) and \(A C\) is a transversal.
and \(\angle 1=\angle 3\)
(1) [Alternate interior angles are equal]

Also, \(B C \| A D\) and \(A C\) is a transversal.
and \(\angle 2=\angle 4\)
(2) [Alternate interior angles are equal]

Also, \(\angle 1=\angle 2\)
(3) [ since AC bisects \(\angle A\) ]

From (1), (2) and (3), we have
\(\angle 3=\angle 4\)
Hence, AC bisects \(\angle \mathrm{C}\).
(ii) In \(\triangle A B C\), we have
\(\angle 1=\angle 4\) [From (2) and (3)]
or, \(B C=A B\)
(4) [Sides opposite to equal angles
of a \(\Delta\) are equal]
Similarly, AD = DC
But, \(A B C D\) is a parallelogram. [Given]
therefore, \(A B=D C\)
From (4), (5) and (6), we have
\(A B=B C=C D=D A\)
Thus, \(A B C D\) is a rhombus.

Question 7: ABCD is a rhombus. Show that diagonal AC bisects \(\angle A\) as well as \(\angle C\) and diagonal \(B D\) bisects \(\angle B\) as well \(A S \angle D\).


The given \(A B C D\) is a rhombus therefore, \(A B=B C=C D=D A\) and also, \(A B \| C D\) and \(A D \|\) BC

Now, from the diagram \(C D=A D\) or, \(\angle 1=\angle 2 \ldots \ldots\).................... [Angles opposite to equal sides of a triangle are equal]
Also, \(A D \| B C\) and \(A C\) is the transversal. [Every rhombus is a parallelogram]
or, \(\angle 1=\angle 3\)
(2) [Alternate interior angles are equal]

From (1) and (2), we have
\(\angle 2=\angle 3\)
Since \(A B \| D C\) and \(A C\) is transversal.
therefore, \(\angle 2=\angle 4\)
(4) [Alternate interior angles are equal]

From (1) and (4), we have \(\angle 1=\angle 4\)
Therefore, \(A C\) bisects \(\angle C\) as well as \(\angle A\).

Again, \(\mathrm{AB}=\mathrm{CB}\) or, \(\angle 3=\angle 4\)
(4) [Angles opposite to equal sides of a triangle are equal]
Also, \(\mathrm{AB}|\mid \mathrm{DC}\) and BD is the transversal. [Every rhombus is a parallelogram]
or, \(\angle 2=\angle 4\) \(\qquad\) (5) [Alternate interior angles are equal]

From (4) and (5), we have,
\(\angle 1=\angle 4\)
Since \(A D \| B C\) and \(B D\) is transversal.
therefore, \(\angle 1=\angle 3\)
\(\angle 3\).
(7) [Alternate interior angles are equal]

From (4) and (7), we have \(\angle 2=\angle 3\)
Therefore, \(B D\) bisects \(\angle B\), as well as \(\angle D\).

\section*{Question 8: \(A B C D\) is a rectangle in which diagonal \(A C\) bisects \(\angle A\) as well as \(\angle C\). Show that \\ (i) \(A B C D\) is a square \\ (ii) diagonal BD bisects \(\angle \mathrm{B}\) as well as \(\angle \mathrm{D}\).}

Answer:


We have a rectangle \(A B C D\) such that \(A C\) bisects \(\angle A\) as well as \(\angle C\). i.e., \(\angle 1=\angle 4\) and \(\angle 2=\angle 3\)
i) We know that every rectangle is a parallelogram.

Therefore, \(A B C D\) is a parallelogram.
Or, \(A B \| C D\) and \(A C\) is a transversal.
therefore, \(\angle 2=\angle 4\)
(2)[Alternate interior angles are equal]

From (1) and (2), we have
\(\angle 3=\angle 4\)
In \(\triangle A B C, \angle 3=\angle 4\), hence, \(A B=B C\) [Sides opposite to equal angles of \(A\) are equal]
Similarly, CD = DA
So, \(A B C D\) is a rectangle having adjacent sides equal.
Hence, \(A B C D\) is a square.
ii) Since ABCD is a square and diagonals of a square bisect the opposite angles.

So, \(B D\) bisects \(\angle B\) as well as \(\angle D\).

Question 9: In parallelogram ABCD, two points \(P\) and \(Q\) are taken on diagonal BD such that DP = BQ (see figure). Show that,
i) \(\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}\)
ii) \(A P=C Q\)
iii) \(\triangle A Q B \cong \triangle C P D\)
iv) \(A Q=C P\)
v) \(A P C Q\) is a parallelogram


Answer: We have a parallelogram \(A B C D, B D\) is the diagonal and points \(P\) and \(Q\) are such that \(P D=Q B\)
(i) Since \(A D \| B C\) and \(B D\) is a transversal.
therefore, \(\angle \mathrm{ADB}=\angle \mathrm{CBD}\) [Alternate interior angles are equal]
or, \(\angle A D P=\angle C B Q\)
Now, in \(\triangle A P D\) and \(\triangle C Q B\), we have
\(A D=C B\) [Opposite sides of a parallelogram ABCD are equal]
```

PD = QB [Given]
\angleADP = \angleCBQ [Proved]
hence, }\triangle\textrm{APD}\cong\triangleCQB [By SAS congruency

```
(ii) Since, \(\triangle \mathrm{APD} \cong \triangle C Q B\) [Proved] or, \(\mathrm{AP}=\mathrm{CQ}\) [By C.P.C.T.]
(iii) Since, \(\mathrm{AB}|\mid \mathrm{CD}\) and BD is a transversal therefore, \(\angle \mathrm{ABD}=\angle \mathrm{CDB}\) or, \(\angle A B Q=\angle C D P\)
Now, in \(\triangle A Q B\) and \(\triangle C P D\), we have
\(\mathrm{QB}=\mathrm{PD}\) [Given]
\(\angle \mathrm{ABQ}=\angle \mathrm{CDP}\) [Proved]
\(A B=C D[Y\) Opposite sides of a parallelogram ABCD are equal]
hence, \(\triangle \mathrm{AQB}=\triangle \mathrm{CPD}\) [By SAS congruency]
(iv) Since, \(\triangle \mathrm{AQB}=\triangle \mathrm{CPD}\) [Proved]
or, \(\mathrm{AQ}=\mathrm{CP}\) [By C.P.C.T.]
(v) In a quadrilateral \(\triangle \mathrm{PCQ}\),

Opposite sides are equal. [Proved]
Or, \(\triangle \mathrm{PCQ}\) is a parallelogram.

Question 10: ABCD is a parallelogram, and AP and CQ are perpendiculars from vertices \(A\) and \(C\) on diagonal BD (see figure). Show that
i) \(\triangle \mathrm{APB} \cong \triangle \mathrm{CQD}\)
ii) \(A P=C Q\)

(ii) \(A P=C Q\).

Answer: (i) In \(\triangle A P B\) and \(\triangle C Q D\), we have
\(\angle A P B=\angle C Q D\left[\right.\) Each \(90^{\circ}\) ]
\(A B=C D\) [Opposite sides of a parallelogram \(A B C D\) are equal]
\(\angle A B P=\angle C D Q\) [Alternate angles are equal as \(A B \| C D\) and \(B D\) is a transversal] therefore, \(\triangle \mathrm{APB}=\triangle \mathrm{CQD}\) [By AAS congruency]
(ii) Since, \(\triangle \mathrm{APB} \cong \triangle C Q D\) [Proved in the previous part (i)]
therefore, \(\mathrm{AP}=\mathrm{CQ}\) [By C.P.C.T.]

Question 11: In \(\triangle A B C\) and \(\triangle D E F, A B=D E, A B| | D E, B C-E F\) and \(B C|\mid E F\). Vertices \(A, B\) and \(C\) are joined to vertices \(D, E\) and \(F\), respectively (see figure). Show that
(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) \(A D\) || \(C F\) and \(A D=C F\)
(iv) quadrilateral ACFD is a parallelogram
(v) \(\mathrm{AC}=\mathrm{DF}\)
(vi) \(\triangle A B C \cong \triangle D E F\)


Answer: i) We have \(\mathrm{AB}=\mathrm{DE}\) [Given]
and \(A B|\mid D E\) [Given]
i. e., \(A B E D\) is a quadrilateral in which a pair of opposite sides (AB and DE) are parallel and of equal length.
therefore, \(A B E D\) is a parallelogram. [proved]
(ii) \(\mathrm{BC}=\mathrm{EF}\) [Given]
and BC || EF [Given]
i.e. BEFC is a quadrilateral in which a pair of opposite sides (BC and EF) are parallel and of equal length.
therefore, BEFC is a parallelogram. [proved]
(iii) ABED is a parallelogram [Proved]
therefore, \(A D|\mid B E\) and \(A D=B E\)
(1) [Opposite sides of a
parallelogram are equal and parallel] Also, BEFC is a parallelogram. [Proved]
\(B E \| C F\) and \(B E=C F\)
(2)[Opposite sides of a parallelogram are equal and parallel]
From (1) and (2), we have
\(A D \| C F\) and \(A D=C F\)
(iv) Since, AD || CF and AD = CF [Proved]
i.e., In quadrilateral ACFD, one pair of opposite sides (AD and CF) are parallel and of equal length.
Therefore, Quadrilateral ACFD is a parallelogram.
(v) Since, ACFD is a parallelogram. [Proved]

So, \(A C=D F\) [Opposite sides of a parallelogram are equal]
(vi) In \(\triangle\) ABC and \(\triangle\) DFF, we have
\(\mathrm{AB}=\mathrm{DE}\) [Given]
\(B C=E F\) [Given]
```

AC = DE [Proved in (v) part]
ABC\cong \DFF [By SSS congruency]

```

Question 12: \(A B C D\) is a trapezium in which \(A B \| C D\) and \(A D=B C\) (see figure). Show that
(i) \(\angle A=\angle B\)
(ii) \(\angle C=\angle D\)
(iii) \(\triangle A B C \cong \triangle B A D\)
(iv) diagonal \(A C=\) diagonal \(B D\)


Answer: We have given a trapezium \(A B C D\) in which \(A B \| C D\) and \(A D=B C\).

(i) Produce \(A B\) to \(E\) and draw \(C F|\mid A D\) as, \(A B| \mid D C\)
or, AE || DC Also AD || CF
Or, OECD is a parallelogram.
or, \(A D=C E\)
(1)[Opposite sides of the parallelogram are equal]

But AD = BC
.(2) [Given]
By (1) and (2), BC = CF
Now, in \(\triangle B C F\), we have \(B C=C F\)
\(\Rightarrow \angle C E B=\angle C B E \ldots \ldots \ldots \ldots \ldots \ldots \ldots\).............Angles opposite to equal sides of a triangle are equal]
Also, \(\angle A B C+\angle C B E=180^{\circ}\)
(4) [Linear pair]

From (4) and (5), we get
\(\angle A B C+\angle C B E=\angle A+\angle C E B\)
\(\mathrm{OR}, \angle \mathrm{ABC}=\angle \mathrm{A}[\) From (3)]
\(O R, \angle B=\angle A\)
ii) \(A B \| C D\) and \(A D\) is a transversal.
therefore, \(\angle A+\angle D=180^{\circ}\)
(7) [Co-interior angles]

Similarly, \(\angle B+\angle C=180^{\circ}\)
From (7) and (8), we get
\(\angle A+\angle D=\angle B+\angle C\)
or, \(\angle \mathrm{C}=\angle \mathrm{D}\) [From (6)]
(iii) In \(\triangle A B C\) and \(\triangle B A D\), we have
\(\mathrm{AB}=\mathrm{BA}\) [Common]
\(B C=A D\) [Given]
\(\angle A B C=\angle B A D[\) Proved]
or, \(\triangle \mathrm{ABC}=\triangle \mathrm{BAD}\) [By SAS congruency]
(iv) Since, \(\triangle \mathrm{ABC}=\Delta \mathrm{BAD}\) [Proved] hence, \(\mathrm{AC}=\mathrm{BD}\) [By C.P.C.T.]

\section*{Exercise 8.2}

Question 1: ABCD is a quadrilateral in which \(P, Q, R\) and \(S\) are mid-points of the sides AB, BC, CD and DA (see figure). AC is a diagonal. Show that
(i) \(S R \| A C\) and \(S R=12 A C\)
(ii) \(\mathrm{PQ}=\mathrm{SR}\)
(iii) PQRS is a parallelogram.


Answer: (i) In \(\triangle A C D\), We have
Therefore, \(S\) is the mid-point of \(A D\), and \(R\) is the mid-point of \(C D\).
SR = 12AC and SR || AC \(\qquad\) (1)[By mid-point theorem]
(ii) In \(\triangle A B C, P\) is the mid-point of \(A B\) and \(Q\) is the mid-point of \(B C\).
\(P Q=12 A C\) and \(P Q|\mid A C\)
(2)[By mid-point theorem]

From (1) and (2), we get
\(P Q={ }_{2}^{1} A C=S R\) and \(P Q\|A C\| S R\)
hence, \(P Q=S R\) and \(P Q \| S R\)
(iii) In a quadrilateral PQRS, \(\mathrm{PQ}=\mathrm{SR}\) and \(\mathrm{PQ}|\mid \mathrm{SR}\) [Proved]
Therefore, PQRS is a parallelogram.

Question 2: \(A B C D\) is a rhombus, and \(P, Q, R\) and \(S\) are the mid-points of the sides \(A B, B C, C D\) and \(D A\), respectively. Show that the quadrilateral PQRS is a rectangle.

Answer:


We have a rhombus \(A B C D\) and \(P, Q, R\) and \(S\) are the mid-points of the sides \(A B, B C, C D\) and DA respectively. For the convenience of the answer, Join AC.

In \(\triangle A B C, P\) and \(Q\) are the mid-points of \(A B\) and \(B C\) respectively.
therefore, \(P Q=\frac{1}{2} A C\) and \(P Q \| A C\) \(\qquad\) (1) [By mid-point theorem] In \(\triangle A D C, R\) and \(S\) are the mid-points of \(C D\) and \(D A\) respectively.
therefore, \(S R=\frac{1}{2} A C\) and \(S R \| A C\)
(2) [By mid-point theorem]

From (1) and (2), we get
\(P Q=\frac{1}{2} A C=S R\) and \(P Q\|A C\| S R\)
or, \(\mathrm{PQ}=\mathrm{SR}\) and \(\mathrm{PQ} \| \mathrm{SR}\)
hence, PQRS is a parallelogram.
Now, in \(\triangle E R C\) and \(\triangle E Q C\),
\(\angle 1=\angle 2\) [The diagonals of a rhombus bisect the opposite angles]
\(C R=C Q\left[\frac{C D}{2}=\frac{B C}{2}\right]\)
\(C E=C E[C o m m o n]\)
Therefore, \(\Delta \mathrm{ERC} \cong \Delta \mathrm{EQC}\) [By SAS congruency]
or, \(\angle 3=\angle 4\)
(4) [By C.P.C.T.]

But \(\angle 3+\angle 4=180^{\circ} \ldots \ldots\). (5) [Linear pair]
From (4) and (5), we get \(\angle 3=\angle 4=90^{\circ}\)
Now, \(\angle Q R P=180^{\circ}-\angle b\) [ \(Y\) Co-interior angles for \(P Q \| A C\) and \(E Q\) is transversal]
But \(\angle 5=\angle 3\) [Vertically opposite angles are equal]
thus, \(\angle 5=90^{\circ}\)
So, \(\angle \mathrm{RQP}=180^{\circ}-\angle 5=90^{\circ}\)
So, One angle of parallelogram PQRS is \(90^{\circ}\).
Thus, PQRS is a rectangle.

Question 3: \(A B C D\) is a rectangle and \(P, Q, R\) and \(S\) are mid-points of the sides \(A B, B C\), \(C D\) and DA, respectively. Show that the quadrilateral PQRS is a rhombus.

Answer: We have,
Now, on \(\triangle A B C\), we have
\(P Q=\frac{1}{2} A C\) and \(P Q \| A C\)
(1) [By mid-point theorem]

Similarly, in \(\triangle A D C\), we have
SR \(=\frac{1}{2} A C\) and \(S R \| A C\)
From (1) and (2), we get
\(P Q=S R\) and \(P Q|\mid S R\)
Therefore, PQRS is a parallelogram.
Now, in \(\triangle \mathrm{PAS}\) and \(\triangle \mathrm{PBQ}\), we have
\(\angle \mathrm{A}=\angle \mathrm{B}\left[\right.\) Each \(\left.90^{\circ}\right]\)
\(A P=B P[P\) is the mid-point of \(A B]\)
\(\mathrm{AS}=\mathrm{BQ}\left[{ }_{2}^{1} \mathrm{AD}=\frac{1}{2} \mathrm{BC}\right]\)
therefore, \(\triangle P A S \cong \triangle P B Q\) [By SAS congruency]
hence, \(\mathrm{PS}=\mathrm{PQ}\) [By C.P.C.T.]
Also, \(\mathrm{PS}=\mathrm{QR}\) and \(\mathrm{PQ}=\mathrm{SR}\) [opposite sides of a parallelogram are equal]
So, \(P Q=Q R=R S=S P\), i.e., \(P Q R S\) is a parallelogram having all of its sides equal.
Hence, PQRS is a rhombus.

Question 4: \(A B C D\) is a trapezium in which \(A B \| D C, B D\) is a diagonal and \(E\) is the midpoint of AD. A line is drawn through \(E\) parallel to \(A B\) intersecting \(B C\) at \(F\) (see figure). Show that \(F\) is the mid-point of \(B C\).


Answer:


In \(\triangle \mathrm{DAB}\), we know that E is the mid-point of AD
EG || AB [EF || AB]
Using the converse of mid-point theorem, we get, G is the mid-point of \(B D\).
Again in ABDC,
we have \(G\) as the midpoint of \(B D\) and \(G F|\mid ~ D C ~[A B ~| | ~ D C ; ~ E F ~| | ~ A B ~ a n d ~ G F ~ i s ~ a ~ p a r t ~ o f ~ E F] ~\) Using the converse of the mid-point theorem, we get, \(F\) is the mid-point of \(B C\).

Question 5: In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see figure). Show that the line segments AF and EC trisect the diagonal BD.


Answer: Since the opposite sides of a parallelogram are parallel and equal.
thus, AB || DC
or, \(A E\) || FC
and \(A B=D C\)
Or, \(\frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{DC}\)
Or, \(A E=F C\)
From (1) and (2), we have
AE || PC and AE = PC
Therefore, \(\triangle E C F\) is a parallelogram.
Now, in \(\triangle \mathrm{DQC}\), we have F is the mid-point of DC and \(\mathrm{FP}|\mid C Q\) [AF || CE]
thus, \(D P=P Q\)
[By converse of mid-point theorem]
Similarly, in A BAP, E is the mid-point of AB and \(\mathrm{EQ}|\mid \mathrm{AP}\) [AF || CE]

therefore, From (3) and (4), we have
\(D P=P Q=B Q\)
So, the line segments AF and EC trisect the diagonal BD.

\section*{Question 6: Show that the line segments joining the mid-points of the opposite sides} of a quadrilateral bisect each other.

Answer: Let \(A B C D\) be a quadrilateral, where \(P, Q, R\) and \(S\) are the mid-points of the sides \(A B, B C, C D\) and \(D A\) respectively.
Join PQ, QR, RS and SP.
Let us also join PR, SQ and AC.


In \(\triangle A B C\), we have \(P\) and \(Q\) are the mid-points of \(A B\) and \(B C\), respectively.
thus, \(P Q \| A C\) and \(P Q={ }_{2}^{1} A C\)
(1) [By mid-point theorem]

Similarly, RS \| \(A C\) and \(R S=\frac{1}{2} A C\)
thus, By (1) and (2), we get
\(P Q \| R S, P Q=R S\)
Therefore, \(P Q R S\) is a parallelogram, and as per rules, the diagonals of a parallelogram bisect each other, i.e., PR and SQ bisect each other. Hence, the line segments joining the midpoints of opposite sides of a quadrilateral ABCD bisect each other.

Question 7: \(A B C\) is a triangle right angled at \(C\). A line through the mid-point \(M\) of hypotenuse \(A B\) and parallel to \(B C\) intersects \(A C\) at \(D\). Show that
(i) \(D\) is the mid-point of \(A C\)
(ii) \(M D \perp A C\)
(iii) \(C M=M A=\frac{1}{2} A B\)

Answer:

(i) In \(\triangle A C B\), we have

MD || BC [Given]
\(M\) is the mid-point of \(A B\). [Given]
Now, Using the converse of mid-point theorem,
\(D\) is the mid-point of \(A C\).
(ii) Since MD || \(B C\) and \(A C\) is a transversal.
\(\angle B C A=90^{\circ}\) [Given]
\(\angle \mathrm{MDA}=\angle \mathrm{BCA}\) [As Corresponding angles are equal]
\(\angle \mathrm{MDA}=90^{\circ}\)
Hence, MD \(\perp, A C\).
(iii) In \(\triangle A D M\) and \(\triangle C D M\), we have

MD = MD [Common]
\(\angle A D M=\angle C D M\) [Each equal to \(90^{\circ}\) ]
\(A D=C D[D\) is the mid-point of \(A C]\)
therefore, \(\triangle \mathrm{ADM} \cong \triangle \mathrm{CDM}\) [By SAS congruency]
thus, \(\mathrm{MA}=\mathrm{MC}\) [By C.P.C.T.]
since \(M\) is the mid-point of \(A B\) [Given]
\(M A=\frac{1}{2} A B\)
From (1) and (2), we have
\(C M=M A=A B\)```

