Chapter 8- Quadrilaterals Exercise 8.1

<u>Question 1:</u> The angles of a quadrilateral are in the ratio 3: 5: 9: 13. Find all the angles of the quadrilateral.

Answer: Let the angles of the quadrilateral be 3x, 5x, 9x and 13x. therefore, $3x + 5x + 9x + 13x = 360^{\circ}$ [as we know angle sum property of a quadrilateral] or, $30x = 360^{\circ}$ or, $x = \frac{360^{\circ}}{30} = 12^{\circ}$ thus, $3x = 3 \times 12^{\circ} = 36^{\circ}$ $5x = 5 \times 12^{\circ} = 60^{\circ}$ $9x = 9 \times 12^{\circ} = 108^{\circ}$ $13a = 13 \times 12^{\circ} = 156^{\circ}$ Hence, the required angles of the quadrilateral are 36°, 60°, 108° and 156°.

Question 2: If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Answer: Let ABCD is a parallelogram and AC = BD.

In $\triangle ABC$ and $\triangle DCB$, AC = DB [Given] AB = DC [Opposite sides of a parallelogram] BC = CB [Common]

therefore, $\triangle ABC \cong \triangle DCB$ [By SSS congruency] or, $\angle ABC = \angle DCB$ [By C.P.C.T.](1)

Now from (1) and (2), we have $\angle ABC = \angle DCB = 90^{\circ}$ i.e., ABCD is a parallelogram having an angle equal to 90°.

Hence, ABCD is a rectangle.

Question 3: Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Answer: Let ABCD be a quadrilateral such that the diagonals AC and BD bisect each other at O making a right angle.

therefore, In $\triangle AOB$ and $\triangle AOD$, we have AO = AO [Common] OB = OD [O is the mid-point of BD] $\angle AOB = \angle AOD$ [Each 90°]

therefore, $\triangle AQB \cong \triangle AOD$ [By,SAS congruency]	
hence, AB = AD [By C.P.C.T.]	(1)
Similarly, AB = BC	(2)
BC = CD(3)	
CD = DA(4)	
therefore, From (1), (2), (3) and (4), we have	
AB = BC = CD = DA	
Thus, the quadrilateral ABCD is a rhombus.	

Question 4: Show that the diagonals of a square are equal and bisect each other at right angles.

Answer: Let ABCD be a square such that its diagonals AC and BD intersect at O.

i) <u>To prove that the diagonals are equal.</u> Therefore, we need to prove AC = BD. In $\triangle ABC$ and $\triangle BAD$, we have AB = BA [Common] BC = AD [Sides of a square ABCD]

 $\angle ABC = \angle BAD$ [Each angle is 90°] hence, $\triangle ABC \cong \triangle BAD$ [By SAS congruency] AC = BD [By C.P.C.T.](1)

(ii) <u>To prove diagonals bisect each other.</u> AD || BC and AC is a transversal. [: A square is a parallelogram] therefore, $\angle 1 = \angle 3$ [Alternate interior angles are equal] Similarly, $\angle 2 = \angle 4$ Now, in $\triangle OAD$ and $\triangle OCB$, we have AD = CB [Sides of a square ABCD] $\angle 1 = \angle 3$ [Proved] $\angle 2 = \angle 4$ [Proved] therefore, $\triangle OAD \cong \triangle OCB$ [By ASA congruency] $\Rightarrow OA = OC$ and OD = OB [By C.P.C.T.] i.e., the diagonals AC and BD bisect each other at O......(2)

iii) To prove diagonals bisect each other at 90°. In $\triangle OBA$ and $\triangle ODA$, we have OB = OD [Proved] BA = DA [Sides of a square ABCD] OA = OA [Common] therefore, $\triangle OBA \cong \triangle ODA$ [By SSS congruency] or, $\angle AOB = \angle AOD$ [By C.P.C.T.](3) As we know that, $\angle AOB$ and $\angle AOD$ form a linear pair hence, $\angle AOB + \angle AOD = 180^{\circ}$ therefore, $\angle AOB = \angle AOD = 90^{\circ}$ [By(3)] or, $AC \perp BD$ (4) From (1), (2) and (4), we get AC and BD are equal and bisect each other at right angles.

Question 5: Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Answer: Let ABCD be a quadrilateral such that diagonals AC and BD are equal and bisect each other at right angles.

In $\triangle AOD$ and $\triangle AOB$, we have $\angle AOD = \angle AOB$ [Each 90°] AO = AO [Common] OD = OB [As, O is the midpoint of BD] therefore, $\triangle AOD \cong \triangle AOB$ [By SAS congruency] or, AD = AB [By C.P.C.....(1) Similarly, we have AB = BC(2) BC = CD(3) CD = DA(4) From (1), (2), (3) and (4), we have AB = BC = CD = DATherefore, all sides of the Quadrilateral ABCD are equal.

In $\triangle AOD$ and $\triangle COB$, we have AO = CO [Given] OD = OB [Given] $\angle AOD = \angle COB$ [Vertically opposite angles] So, $\triangle AOD \cong \triangle COB$ [By SAS congruency] therefore, $\angle 1 = \angle 2$ [By C.P.C.T.] But, they form a pair of alternate interior angles. hence, AD || BC Similarly, AB || DC Therefore, ABCD is a parallelogram. As we know that, Parallelogram having all its sides equal is a rhombus. Therefore, ABCD is a rhombus.

Now, in $\triangle ABC$ and $\triangle BAD$, we have AC = BD [Given] BC = AD [Proved] AB = BA [Common] therefore, $\triangle ABC \cong \triangle BAD$ [By SSS congruency] hence, $\angle ABC \cong \triangle BAD$ [By C.P.C.T.](5) Since AD || BC and AB is a transversal. thus, $\angle ABC + \angle BAD = 180^{\circ}$ (6) [Co – interior angles] or, $\angle ABC = \angle BAD = 90^{\circ}$ [By(5) & (6)] So, rhombus ABCD is having one angle equal to 90°. Thus, ABCD is a square.

Question 6: Diagonal AC of a parallelogram ABCD bisects $\angle A$ (see figure). Show that (i) it bisects $\angle C$ also,

(ii) ABCD is a rhombus.

Answer:

We have a parallelogram ABCD whose diagonal AC bisects $\angle A$ hence, $\angle DAC = \angle BAC$

of a \triangle are equal] Similarly, AD = DC(5) But, ABCD is a parallelogram. [Given] therefore, AB = DC(6) From (4), (5) and (6), we have AB = BC = CD = DA Thus, ABCD is a rhombus.

Question 7: ABCD is a rhombus. Show that diagonal AC bisects $\angle Aas$ well as $\angle C$ and diagonal BD bisects $\angle B$ as well AS $\angle D$.

Answer:

The given ABCD is a rhombus therefore, AB = BC = CD = DA and also, $AB \parallel CD$ and $AD \parallel BC$

Question 8: ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that
(i) ABCD is a square
(ii) diagonal BD bisects ∠B as well as ∠D.

Answer:

We have a rectangle ABCD such that AC bisects $\angle A$ as well as $\angle C$. i.e., $\angle 1 = \angle 4$ and $\angle 2 = \angle 3$ (1)

ii) Since ABCD is a square and diagonals of a square bisect the opposite angles. So, BD bisects $\angle B$ as well as $\angle D$.

Question 9: In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see figure). Show that, i) $\triangle APD \cong \triangle CQB$ ii) $\triangle P = CQ$ iii) $\triangle AQB \cong \triangle CPD$ iv) AQ = CPv) APCQ is a parallelogram

Answer: We have a parallelogram ABCD, BD is the diagonal and points P and Q are such that PD = QB

(i) Since AD || BC and BD is a transversal. therefore, $\angle ADB = \angle CBD$ [Alternate interior angles are equal] or, $\angle ADP = \angle CBQ$ Now, in $\triangle APD$ and $\triangle CQB$, we have AD = CB [Opposite sides of a parallelogram ABCD are equal] PD = QB [Given] $\angle ADP = \angle CBQ$ [Proved] hence, $\triangle APD \cong \triangle CQB$ [By SAS congruency]

(ii) Since, $\triangle APD \cong \triangle CQB$ [Proved] or, AP = CQ [By C.P.C.T.]

(iii) Since, AB || CD and BD is a transversal therefore, $\angle ABD = \angle CDB$ or, $\angle ABQ = \angle CDP$ Now, in $\triangle AQB$ and $\triangle CPD$, we have QB = PD [Given] $\angle ABQ = \angle CDP$ [Proved] AB = CD [Y Opposite sides of a parallelogram ABCD are equal] hence, $\triangle AQB = \triangle CPD$ [By SAS congruency]

(iv) Since, $\triangle AQB = \triangle CPD$ [Proved] or, AQ = CP [By C.P.C.T.]

(v) In a quadrilateral $\triangle PCQ$, Opposite sides are equal. [Proved] Or, $\triangle PCQ$ is a parallelogram.

Question 10: ABCD is a parallelogram, and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see figure). Show that i) $\triangle APB \cong \triangle CQD$ ii) AP = CQ

Answer: (i) In \triangle APB and \triangle CQD, we have \angle APB = \angle CQD [Each 90°] AB = CD [Opposite sides of a parallelogram ABCD are equal] \angle ABP = \angle CDQ [Alternate angles are equal as AB || CD and BD is a transversal] therefore, \triangle APB = \triangle CQD [By AAS congruency]

(ii) Since, $\triangle APB \cong \triangle CQD$ [Proved in the previous part (i)] therefore, AP = CQ [By C.P.C.T.]

Question 11: In \triangle ABC and \triangle DEF, AB = DE, AB || DE, BC – EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F, respectively (see figure). Show that

(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) AD || CF and AD = CF
(iv) quadrilateral ACFD is a parallelogram
(v) AC = DF

(vi) $\triangle ABC \cong \triangle DEF$

Answer: i) We have AB = DE [Given] and AB || DE [Given] i. e., ABED is a quadrilateral in which a pair of opposite sides (AB and DE) are parallel and of equal length. therefore, ABED is a parallelogram. [proved]

(ii) BC = EF [Given]
and BC || EF [Given]
i.e. BEFC is a quadrilateral in which a pair of opposite sides (BC and EF) are parallel and of equal length.
therefore, BEFC is a parallelogram. [proved]

(iii) ABED is a parallelogram [Proved] therefore, AD || BE and AD = BE(1) [Opposite sides of a parallelogram are equal and parallel] Also, BEFC is a parallelogram. [Proved]

BE || CF and BE = CF(2)[Opposite sides of a parallelogram are equal and parallel] From (1) and (2), we have AD || CF and AD = CF

(iv) Since, AD || CF and AD = CF [Proved]
i.e., In quadrilateral ACFD, one pair of opposite sides (AD and CF) are parallel and of equal length.
Therefore, Quadrilateral ACFD is a parallelogram.

(v) Since, ACFD is a parallelogram. [Proved]So, AC =DF [Opposite sides of a parallelogram are equal]

(vi) In $\triangle ABC$ and $\triangle DFF$, we have AB = DE [Given] BC = EF [Given] $AC = DE [Proved in (v) part] \\ \Delta ABC \cong \Delta DFF [By SSS congruency]$

Question 12: ABCD is a trapezium in which AB || CD and AD = BC (see figure). Show that (i) $\angle A = \angle B$ (ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD$ (iv) diagonal AC = diagonal BD

Answer: We have given a trapezium ABCD in which AB || CD and AD = BC.

therefore, $\angle A + \angle D = 180^{\circ}$	(7) [Co-interior angles]
Similarly, $\angle B + \angle C = 180^{\circ}$	
From (7) and (8), we get	

 $\angle A + \angle D = \angle B + \angle C$ or, $\angle C = \angle D$ [From (6)]

(iii) In $\triangle ABC$ and $\triangle BAD$, we have AB = BA [Common] BC = AD [Given] $\angle ABC = \angle BAD$ [Proved] or, $\triangle ABC = \triangle BAD$ [By SAS congruency]

(iv) Since, $\triangle ABC = \triangle BAD$ [Proved] hence, AC = BD [By C.P.C.T.]

Exercise 8.2

Question 1: ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see figure). AC is a diagonal. Show that (i) SR || AC and SR = 12 AC (ii) PQ = SR (iii) PQRS is a parallelogram.

Answer: (i) In \triangle ACD, We have Therefore, S is the mid-point of AD, and R is the mid-point of CD. SR = 12AC and SR || AC(1)[By mid-point theorem]

(ii) In $\triangle ABC$, P is the mid-point of AB and Q is the mid-point of BC. PQ = 12AC and PQ || AC(2)[By mid-point theorem]

From (1) and (2), we get $PQ = \frac{1}{2}AC = SR$ and $PQ \parallel AC \parallel SR$ hence, PQ = SR and $PQ \parallel SR$

(iii) In a quadrilateral PQRS, PQ = SR and PQ || SR [Proved] Therefore, PQRS is a parallelogram. Question 2: ABCD is a rhombus, and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Show that the quadrilateral PQRS is a rectangle.

Answer:

We have a rhombus ABCD and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. For the convenience of the answer, Join AC.

In $\triangle ABC$, P and Q are the mid-points of AB and BC respectively. therefore, $PQ = \frac{1}{2}AC$ and $PQ \parallel AC$ (1) [By mid-point theorem] In $\triangle ADC$, R and S are the mid-points of CD and DA respectively. therefore, SR = $\frac{1}{2}$ AC and SR || AC(2) [By mid-point theorem] From (1) and (2), we get $PQ = \frac{1}{2}AC = SR \text{ and } PQ \parallel AC \parallel SR$ or, PQ = SR and PQ || SR hence, PQRS is a parallelogram.(3) Now, in \triangle ERC and \triangle EQC, $\angle 1 = \angle 2$ [The diagonals of a rhombus bisect the opposite angles] $CR = CQ \left[\frac{CD}{2} = \frac{BC}{2}\right]$ CE = CE [Common]Therefore, $\triangle ERC \cong \triangle EQC$ [By SAS congruency] From (4) and (5), we get $\angle 3 = \angle 4 = 90^{\circ}$ Now, $\angle QRP = 180^\circ - \angle b$ [Y Co-interior angles for PQ || AC and EQ is transversal] But $\angle 5 = \angle 3$ [Vertically opposite angles are equal] thus, $\angle 5 = 90^{\circ}$ So, $\angle RQP = 180^\circ - \angle 5 = 90^\circ$ So, One angle of parallelogram PQRS is 90°. Thus, PQRS is a rectangle.

Question 3: ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA, respectively. Show that the quadrilateral PQRS is a rhombus.

Answer: We have, Now, on $\triangle ABC$, we have $PQ = \frac{1}{2}AC$ and $PQ \parallel AC$ (1) [By mid-point theorem] Similarly, in $\triangle ADC$, we have $SR = \frac{1}{2}AC$ and $SR \parallel AC$ (2)

From (1) and (2), we get PQ = SR and PQ || SR Therefore, PQRS is a parallelogram. Now, in \triangle PAS and \triangle PBQ, we have $\angle A = \angle B$ [Each 90°] AP = BP [P is the mid-point of AB] AS = BQ [$\frac{1}{2}$ AD = $\frac{1}{2}$ BC] therefore, \triangle PAS $\cong \triangle$ PBQ [By SAS congruency] hence, PS = PQ [By C.P.C.T.] Also, PS = QR and PQ = SR [opposite sides of a parallelogram are equal] So, PQ = QR = RS = SP, i.e., PQRS is a parallelogram having all of its sides equal. Hence, PQRS is a rhombus.

Question 4: ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the midpoint of AD. A line is drawn through E parallel to AB intersecting BC at F (see figure). Show that F is the mid-point of BC.

Answer:

In \triangle DAB, we know that E is the mid-point of AD EG || AB [EF || AB]

Using the converse of mid-point theorem, we get, G is the mid-point of BD. Again in ABDC,

we have G as the midpoint of BD and GF || DC [AB || DC; EF || AB and GF is a part of EF] Using the converse of the mid-point theorem, we get, F is the mid-point of BC.

Question 5: In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see figure). Show that the line segments AF and EC trisect the diagonal BD.

Answer: Since the opposite sides of a parallelogram are parallel and equal. thus, AB || DC or, AE || FC(1) and AB = DCOr, $\frac{1}{2}AB = \frac{1}{2}DC$ Or, $\overline{AE} = FC$ (2) From (1) and (2), we have AE || PC and AE = PC Therefore, \triangle ECF is a parallelogram. Now, in △DQC, we have F is the mid-point of DC and FP || CQ [AF || CE] thus, DP = PQ(3) [By converse of mid-point theorem] Similarly, in A BAP, E is the mid-point of AB and EQ || AP [AF || CE] thus, BQ = PQ(4) [By converse of mid-point theorem] therefore, From (3) and (4), we have DP = PQ = BQSo, the line segments AF and EC trisect the diagonal BD.

Question 6: Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Answer: Let ABCD be a quadrilateral, where P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Join PQ, QR, RS and SP. Let us also join PR, SQ and AC.

In $\triangle ABC$, we have P and Q are the mid-points of AB and BC, respectively. thus, PQ || AC and PQ = $\frac{1}{2}AC$ (1) [By mid-point theorem] Similarly, RS || AC and RS = $\frac{1}{2}AC$ (2)

thus, By (1) and (2), we get $PQ \parallel RS$, PQ = RS

Therefore, PQRS is a parallelogram, and as per rules, the diagonals of a parallelogram bisect each other, i.e., PR and SQ bisect each other. Hence, the line segments joining the midpoints of opposite sides of a quadrilateral ABCD bisect each other.

Question 7: ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC (ii) MD \perp AC (iii) CM = MA = $\frac{1}{2}$ AB

Answer:

(i) In ∆ACB, we have
MD || BC [Given]
M is the mid-point of AB. [Given]
Now, Using the converse of mid-point theorem,
D is the mid-point of AC.

(ii) Since MD || BC and AC is a transversal. \angle BCA = 90° [Given] \angle MDA = \angle BCA [As Corresponding angles are equal] \angle MDA = 90° Hence, MD \perp , AC.

(iii) In \triangle ADM and \triangle CDM, we have MD = MD [Common] \angle ADM = \angle CDM [Each equal to 90°] AD = CD [D is the mid-point of AC] therefore, \triangle ADM $\cong \triangle$ CDM [By SAS congruency] thus, MA = MC [By C.P.C.T.](1) since M is the mid-point of AB [Given] $MA = \frac{1}{2}AB$ (2) From (1) and (2), we have CM = MA = AB